Mostrando entradas con la etiqueta clima. Mostrar todas las entradas
Mostrando entradas con la etiqueta clima. Mostrar todas las entradas

lunes, 30 de marzo de 2015

Climatización: Fancoils y Splits

11:15 Posted by Carles Casaponsa Vila , , , No comments
Qué es un Fancoil

Siempre que se habla de clima se habla de calor, pero que pasa con el frío. Para climatizar una casa en verano no podemos usar los radiadores que usamos en invierno para calentar el ambiente. Tampoco es muy recomendable usar el suelo radiante para refrescar nuestra casa, ya que si bien en invierno nos beneficia la estratificación del aire caliente en la parte superior de la habitación, en verano no nos interesa que el aire que enfriemos se quede en la parte inferior de la estancia, ya que tendremos la sensación de frío en los pies mientras que en el resto del cuerpo tendremos sensación de calor.

Es por eso que para climatizar una vivienda utilizaremos sistemas diseñados expresamente con este fin, como son los Fancoils y Splits.

¿Qué es un Fancoil y qué es un Split?

A diferencia de los radiadores y el suelo radiante en que la convección se produce de forma natural, en los sistemas de Split y Fancoils la convección se produce de forma forzada. Esto quiere decir básicamente que el aire de la habitación a climatizar es impulsado por unos ventiladores a través del aportador de frío. Al tratarse de convección forzada y no natural como en el caso de un radiador (en que el aire no se impulsa), el intercambio de calor será mucho más rápido por lo que podremos climatizar una habitación más rápidamente con este sistema.

La diferencia básica entre un Split y un Fancoil es que el primer calienta o enfría las baterías  por donde el aire cede el calor con un líquido refrigerante. Por el contrario un Fancoil enfriará esta misma batería usando agua exclusivamente. Mientras que los Splits tienen una sola batería que tanto podrá funcionar en calor o en frío según se desee. Un Fancoil puede tener dos baterías: una de calor y una de frío (a estos se les denomina Fancoils de 4 tubos), de manera que podremos cambiar de frío a calor independientemente del funcionamiento de la bomba de calor. Aunque también es frecuente encontrar Fancoils con tan solo un batería (se denominan Fancoils de 2 tubos, que funcionarán como un Split.

Partes y funcionamiento de un Fancoil

Partes de un Fancoil

Un Fancoil está formado por 4 elementos:

Caja: Es la parte exterior del Fancoil, dentro de la cual se ensamblan el resto de los elementos. Suelen estar provistos de un buen aislamiento tanto térmico, para no tener pérdidas, como acústico, ya que al impulsar el aire a través suyo generaremos ruido.

Ventiladores: Son los encargados de hacer pasar la cantidad justa de aire a través de la baterías de frío y calor. Estos ventiladores son casi siempre centrífugos por una cuestión de espacio. La mayoría de fancoils llevan conexiones para hacer funcionarlos a distintas velocidades para así poder regular mejor la temperatura. Aunque últimamente es bastante común encontrar fancoils que controlan la velocidad del ventilador a través de una señal 0.10V, lo que nos permite ser mucho más precisos en la regulación de la temperatura, lo que a lo largo se traduce en ahorro.

Válvulas: Las válvulas son las que se encargan de dar o no dar paso al agua a través de las baterías de calor o de frío. Y no solo eso, sino que regulando su posición podremos regular el calor que se aporta o extrae al aire que pasa a través de las baterías, lo que nos permitirá tener un mayor control de la instalación.

Baterías: Es por donde circula el agua o líquido refrigerante, se trata de un serpentín que pasa a través de unas rejillas que son las que se encargan de direccionar el aire para que la convección con el serpentín sea la máxima.

Instalación de un Fancoil

Hemos empezado hablando de los fancoils como metro para climatizar una vivienda en verano, pero el método es igualmente válido para calentar la vivienda durante el invierno. Pero tendremos que tener en cuenta varias cosas.
Primeramente hay que diseñar el sistema de retorno del aire. El retorno es por donde los ventiladores succionarán el aire de la habitación para pasarlo a través de la batería. Tenemos que tener muy presente si los fancoils se usarán solo como climatizadores en verano, invierno o durante todo el año, para colocar los retornos en la mejor posición.

Si colocamos los retornos en la parte superior de la habitación, estaremos cogiendo el aire que está estratificado en la parte superior de la habitación, por lo tanto aire caliente. Esto será muy útil durante el verano para enfriar la habitación, pero en invierno será un inconveniente ya que al coger aire que ya está caliente para calentarlo la aportación de calor será menor y tardaremos mucho más en calentar la habitación.

Si por el contrario colocamos los retornos en la parte inferior de la habitación, solucionaremos el problema anterior ya que en invierno estaremos cogiendo el aire frio de la parte inferior de la estancia por lo que la aportación de calor será más alta. Pero por el contrario en verano nos encontraremos que estaremos extrayendo calor a un aire muy frío por lo que el intercambio será pequeño y el tiempo de climatización mayor.

Cuando se trate de un sistema que funcionará durante todo el año lo mejor siempre será optar por este último sistema. La razón es que la impulsión del aire suele hacerse casi siempre des del techo, por lo que en verano el aire frío que impulse el fancoil tendrá que ir desde la parte de arriba hasta abajo. Por lo tanto existirá una estratificación, el aire caliente de arriba se mezclará con el aire impulsado por el fancoil, así el intercambio de calor no se verá tan reducido como en el primer caso.

Girona, 30 de Marzo de 2015

lunes, 23 de marzo de 2015

Clima: Eficiencia Energética

11:07 Posted by Carles Casaponsa Vila , , , , , No comments
climatización ahorro

Como ya hemos visto en más de una ocasión la instalación de clima supone la mitad del consumo total de energía de una vivienda. Por lo tanto es donde más medidas podremos adoptar para reducir el coste de nuestras facturas mensuales. De la misma manera que vimos hace dos semanas con el agua caliente sanitaria, veremos que podemos reducir el consumo energético de nuestra vivienda regulando las temperaturas de generación y distribución de los circuitos de clima.

Del mismo modo que con las instalaciones de agua caliente sanitaria a veces era necesaria la instalación de depósitos de inocencia, también en instalaciones de clima nos podemos encontrar con la necesidad de usar este tipo de depósitos. Acostumbramos a encontrar estos depósitos en instalaciones grandes que requieren temperaturas elevadas con un caudal muy grande, con lo que los generadores no pueden dar abasto en los momentos de máximo consumo.

En una vivienda unifamiliar media, normalmente con la propia caldera de gas nos será suficiente para calentar el agua que necesiten los radiadores o el suelo radiante, pero a medida que la instalación aumente de tamaño de la instalación más necesaria será la utilización de depósitos de inercia.

Generadores

Control On/Off en función de la demanda

En una instalación convencional (sin depósitos de inercia) el funcionamiento del generador (bomba de calor o caldera) es gobernador por los termostatos del interior de la vivienda: cuando es necesaria una aportación de calor (o frío) el termostato manda una señal al generador para que se ponga en marcha, este calentará (o enfriará) el agua a la temperatura que tenga configurada y la mandará directamente a los radiadores o suelo radiante. Una vez la temperatura que mida el termostato sea la deseada el termostato enviará otra señal al generador para que se apague.

Si es una instalación con un depósito de inercia el funcionamiento será un poco distinto, en vez de atacar directamente a los radiadores o suelo radiante, el generador calentará primero el depósito de inercia, y será este el que distribuirá el agua a todos los difusores (radiadores o suelo radiante). De esta forma ya no son los termostatos de la vivienda quienes arrancan y paran el generador, sino que será la temperatura del depósito de inercia quien gobierne el generador. Un termostato en su interior dará la señal de encendido al generador cuando su temperatura esté por debajo de una temperatura que hayamos configurado (55ºC para suelo radiante y 70ºC para radiadores), una vez el deposito esté a la temperatura deseada el termostato mandará una señal al generador para que se pare.

Control de consigna en función de la demanda.

Usando el sistema anterior, ya sea con o sin depósito de inercia, el control será muy simple y barato, pero su rendimiento no será el óptimo lo que nos comportará pérdidas. Una manera de hacer este sistema más eficiente es modificando la temperatura de impulsión del agua en relación a la temperatura exterior.

Pongamos por ejemplo la climatización de una vivienda el día más frío del inverno, si el sistema funciona con suelo radiante tendremos que impulsar el agua a una temperatura elevada (55ºC) a los circuitos de suelo. El problema de las temperaturas elevadas es que las pérdidas que tiene el sistema son más elevadas, tal y como vimos en el post de ACS, por lo que siempre que podamos (sobre todo en sistemas con depósito de inercia) intentaremos reducir al máximo las temperaturas de generación y distribución. Si la tempera exterior sube, no será necesario impulsar el agua a una temperatura tan alta, a lo mejor con 40ºC podremos calentar la casa. Hay termostatos que tienen la función rampa que nos permiten cambiar la consigna en relación a la temperatura exterior:

control clima eficiente

Tal y como vemos en el gráfico cuando la temperatura exterior está por debajo de Wmin (0 grados, por ejemplo) la consigna que tendrá el agua que impulsemos al suelo radiante será la máxima (55ºC), pero cuando la temperatura exterior sube esta consigna baja de forma lineal, hasta que a partir de Wmax (10ºC) se mantiene contante a una consigna más baja (35ºC)..

Control de temperatura de generación en función de la temperatura exterior

Usando termostatos con rampa reduciremos significativamente el consumo, pero aún se puede reducir más.

En el encendido un generador (caldera o bomba de calor) consume mucha más energía que durante su funcionamiento normal, por lo que si nos dedicamos a apagar y encender el generador para controlar la temperatura tendremos muchas pérdidas. Para conseguir que la máquina pare las mínimas veces posibles, necesitaremos comunicación con el generador.

Pongamos por caso una bomba de calor, de la forma que regulamos la temperatura en los casos anteriores encenderemos y apagaremos la bomba muchas veces a lo largo del día, lo que  significa perdidas. Si podemos regular la temperatura de impulsión de la máquina podemos hacer que esta se regule en función de la temperatura a la que queramos al depósito. Por ejemplo, cuando el agua del depósito tenga que estar a 55ºC impulsaremos el agua a 60ºC, de forma que el depósito solo podrá alcanzar los 55ºC cuando el consumo de la instalación sea 0.

Si la temperatura necesaria para el deposito pasa a ser 35ºC, impulsaremos el agua a 40ºC, y al igual que en el caso anterior el depósito solo alcanzará esa temperatura cuando no haya consumo en la instalación de clima.

Girona, 23 de Marzo de 2015

sábado, 29 de noviembre de 2014

¿Como puedo controlar una caldera?

3:23 Posted by Carles Casaponsa Vila , , , , No comments
control caldera

Como ya hemos visto en más de una ocasión los sistemas de clima y Agua Caliente Sanitaria (ACS) son los que más consumo energético suponen en la instalación de una vivienda convencional. Por esta razón, si queremos que nuestra casa sea eficiente energéticamente es donde  tendremos que poner más esfuerzos para reducir su consumo.

Mientras el consumo de ACS es constante durante todo el año, con el consumo por clima se dispara en los meses de invierno. Para proporcionar calor a una casa los sistemas más utilizados en la actualidad son: resistencias eléctricas, bombas de calor y calderas. La peor opción de todas (si hablamos de consumo) son las resistencias eléctricas, su consumo está muy por encima de las otras dos opciones. A parte del problema del consumo tiene el problema de tener poca potencia instantánea por lo que nos harán falta depósitos de inercia tanto de clima como de ACS, por lo que el espacio que ocupará la instalación será mayor. Es cierto que se pueden utilizar resistencia de mayor potencia que pueden calentar el agua instantáneamente pero su consumo es extremadamente alto.

Este problema no solo lo tendremos con las resistencias eléctricas, también lo tendremos si usamos una bomba de calor. Aun así su rendimiento será muy superior al que pueda tener una resistencia eléctrica, es más su rendimiento será superior en algunas ocasiones al de una caldera, ya que estas máquinas aprovechan la temperatura ambiente exterior para calentar el interior de la vivienda. Es por eso que si la temperatura exterior es superior a los 10 grados una bomba de calor nos va a sacar un rendimiento igual o superior al de una caldera. El problema surge cuando la temperatura exterior está por debajo de estos 10 grados.

Por debajo de esta temperatura el rendimiento de una bomba de calor bajará en picado, pudiendo llegar incluso a no poder calentar suficientemente el ACS o el Clima. Es por esta razón que sitios donde el invierno es crudo o que la temperatura baja frecuentemente de los 10ºC instalaremos preferiblemente una caldera, pues su rendimiento será superior al de una bomba de calor y al de una resistencia eléctrica.

Tipos

Actualmente podemos encontrar tres tipos de calderas: las calderas estancas (qua han dejado de fabricarlas), las caderas de bajo NOx (que dejaran de fabricarse a finales de 2015) y las calderas de condensación.

Calderas estancas.

caldera estanca

Estas son la evolución de las calderas atmosféricas de toda la vida. La diferencia es que en vez de coger el aire de combustión de la habitación donde se encuentre la caldera utiliza aire exterior. Con lo que evitamos cualquier posible fuga de gas dentro de la vivienda. Actualmente siguen habiendo muchas calderas de este tipo instaladas, aunque en la actualidad ya no se siguen instalando. Esto se debe a que estas calderas generan gases contaminantes de tipo NOx.

caldera de bajo noxCalderas de bajo NOx

La evolución de las calderas atmosféricas son las calderas de bajo NOx, la diferencia ante las anteriores es que estas enfrían la llama del quemador utilizando el agua de retorno tal y como puede verse en la imagen. Con esto se consigue que el proceso de combustión no genere tantos gases NOx, por lo que es más respetuosa con el medioambiente. Sin embargo, su rendimiento sigue siendo bajo si las comparamos con una caldera de condensación, es por eso que estas calderas dejarán de fabricarse en 2015.

Calderas de condensación

Estas calderas tienen un rendimiento superior a las dos anteriores. Su secreto es que aprovechan el vapor de agua que se genera durante el proceso de combustión. El paso de este vapor a agua genera una energía extra que bien puede ser el 11% de la generada en el proceso de combustión. Por lo que la eficiencia de estas calderas es tan superior a las de bajo NOx. Si tienes que cambiar la caldera mi recomendación es que esta sea de Condensación, por un precio no muy superior tendrás un ahorro muy significativo.


Control de calderas

En el control de calderas tenemos dos opciones: control simple a través de contacto y control parametrizado a través de pasarela.

La primera opción es la más simple i barata. La mayoría de calderas suelen tener un contacto de marcha y paro, este contacto es el que usa cualquier termostato para encender el sistema de clima. Si este contacto lo conectamos a una actuador domótico tendremos el control de la caldera, por lo que podremos abrirla o cerrarla según nos parezca conveniente. A parte de este contacto las calderas llevan una señal de alarma, su funcionamiento es el opuesto al del contacto de marcha/paro. Cuando hay algún problema en la caldera, esta cierra un contacto, por lo que si colocamos un módulo de entradas domótico podremos saber en cualquier momento cual es el estado de la caldera.

No obstante una caldera tiene muchos más parámetros sobre los que se puede actuar como la temperatura de impulsión del agua, la temperatura de retorno, la presión del cabal… estos parámetros  vienen definidos de serie pero muchas veces se pueden programar utilizando una pasarela de KNX a MODBUS, LONWORKS, MBUS… según el tipo de caldera. Manipulando estos parámetros podremos conseguir que la caldera trabaje de una forma más eficiente.

Usando estos parámetros podemos por ejemplo adaptar la temperatura a la que calentamos el agua según la temperatura exterior. Cuando esta sea muy baja calentaremos el agua al máximo para climatizar nuestra vivienda. En cambio si la temperatura exterior está por encima de los 10ºC la temperatura a la que impondremos esta agua no tendrá que ser tan alta, lo que supondrá un ahorro a lo largo del invierno.

Un aspecto muy importante del control de calderas es la integración de varios sistemas de clima. En muchos hogares se suele tener a parte de la caldera una máquina de frío para los meses de calor, que a su vez puede funcionar como bomba de calor. Como ya hemos dicho antes a temperaturas de menos de 10ºC una bomba de calor tiene unos rendimientos muy bajos por lo que es mejor usar una caldera para calentar nuestra vivienda. No obstante, por encima de esta temperatura la bomba de calor tiene buenos rendimientos, llegando a ser más eficiente que una caldera. Si tenemos una sonda de temperatura exterior podemos programar la instalación para que funcione siempre de la forma más eficiente, por encima de los 10ºC la instalación calentará la casa con la bomba de calor, pero cuando esta temperatura baje de los 10ºC la instalación recurrirá a la caldera.

Banyoles, 29 de Noviembre de 2014

sábado, 15 de noviembre de 2014

Eficiencia Energética: Sistemas Pasivos

3:13 Posted by Carles Casaponsa Vila , , , No comments
eficiencia energética girona

En los últimos post hemos estado hablando de eficiencia energética. Es un tema que últimamente está en boca de todo el mundo, no tan solo por la preservación del medioambiente, también por el ahorro económico que puede llegar a suponer que nuestra vivienda esté equipada con sistemas de eficiencia energética. Estos sistemas tienen como objetivo mantener el mismo grado de confort pero a un coste energético y económico mucho menor. Un buen ejemplo seria la regulación de luces en relación a la luminosidad de cada habitación de la casa, si entra algo de luz a través de las ventanas no hará falta que las luces se enciendan al 100%, a lo mejor solo con un 50% tendremos el mismo grado de confort.

Podemos dividir los distintos sistemas de eficiencia energética en dos grupos según su consumo. Por una parte tenemos los sistemas pasivos que tienen un consumo eléctrico de 0 o casi 0. Los sistemas pasivos suelen ser bastante sencillos como el aislamiento térmico de las paredes y ventanas, el paso de luz de las ventanas, la orientación de la vivienda, etc…

Por otra parte los sistemas activos, si tienen un coste en energía eléctrica, aun así al ser sistemas de eficiencia energética su coste energético siempre será inferior a realizar la misma acción con sistemas convencionales. Un ejemplo de este sistema es el que vimos en los últimos post: una instalación solar térmica: aunque las bombas para mover el agua tendrán un coste eléctrico, calentar los mismos depósitos mediante una resistencia eléctrica resultaría mucho más caro.

En este post nos fijaremos en los sistemas pasivos que pueden ser controlados a través de la domótica. Al controlarlos podríamos decir que estos sistemas ya no son pasivos, ya que los dispositivos de control siempre tendrán un pequeño consumo eléctrico. Es por esta razón que al principio de este post he definido a los sistemas de eficiencia energética pasivos como los que tienen un consumo 0 o casi 0.

Ventilación Cruzada

La ventilación cruzada es uno de los sistemas de climatización más simples que existen. Piensa en lo que se hace en una noche calurosa de verano si no se tiene aire acondicionado: se abre la ventana de una habitación y otra ventana en otra parte de la misma vivienda. Así el aire exterior que está a una temperatura más baja circula a través de la vivienda refrescando el ambiente de las habitaciones que haya entre una ventana y otra. Esto tan sencillo es a lo que se llama ventilación cruzada: aportación de aire exterior para climatizar una vivienda.
eficiencia energética ventilación cruzada
Utilizando la domótica no es necesario que los habitantes de la casa estén pendientes de la temperatura exterior e interior de la vivienda para abrir y cerrar las ventanas. El proceso estará totalmente automatizado. El mismo termostato que se encuentra en la habitación a climatizar es el que pedirá una aportación de calor o de frio, si las condiciones exteriores son las adecuadas se abrirán las ventanas para que circule el aire. Pongamos por ejemplo el caso anterior: el termostato dice que le hace falta una aportación de frio, por su parte el sensor de temperatura exterior dice que su temperatura está por debajo que la interior, en ese momento las ventanas se abren permitiendo que el aire exterior entre en la vivienda. Cuando la temperatura interior sea la deseada el mismo sistema de control se encargará de que se cierren las ventanas.

Pozo Canadiense

pozo canadiense gironaOtro buen ejemplo de sistema pasivo es un pozo canadiense. Os habéis fijado que la temperatura que hay en un sótano a lo largo todo el año suele ser bastante constante. Eso hace que cuando la temperatura exterior es alta durante el verano, la temperatura del sótano está unos cuantos grados por debajo. En invierno en cambio, la temperatura de este sótano está por encima de la temperatura exterior. Este fenómeno, que se debe al contacto del sótano con el subsuelo, nos puede beneficiar cuando queramos climatizar una vivienda que se encuentre en la parte superior. Lo único que tendremos que hacer es desplazar el aire del sótano a la vivienda superior.

El control seria parecido al de la ventilación cruzada. Cuando necesitamos aportación de calor o frio se abrirá un paso entre el sótano y el piso superior para que entre el aire nuevo y una ventana alejada de este para extraer el aire del interior de la vivienda.  Cuando de se trate de aportaciones de aire caliente no hará falta impulsar el aire hacia arriba, ya que al tener una densidad más baja el aire caliente se verá obligado a subir hacia arriba. Si por el contrario queremos hacer una aportación de aire frio necesitaríamos un sistema auxiliar para impulsar este aire hacia arriba, como por ejemplo un extractor. En este punto el sistema dejaría de ser pasivo ya que un extractor tiene un consumo que ya no se puede despreciar.

Chimenea Solar

Al igual que en los dos ejemplos anterior este sistema consiste en desplazar el aire que se encuentra en el interior de una vivienda. Si en el ejemplo del pozo canadiense nos aprovechamos de la baja densidad del aire caliente para transportarlo hacia arriba y calentar la vivienda aquí usaremos el mismo principio, para enfriar la vivienda.  Además en vez de evacuar todo el aire como en la ventilación cruzada, con este sistema podremos evacuar solo el aire caliente, haciendo mucho más eficiente la climatización.
chimenea solar en girona
La idea es hacer desplazar el aire que se encuentra en la parte superior de la vivienda (aire caliente) a través de la chimenea hasta el exterior. El problema es que aunque el aire caliente tiende a subir difícilmente podrá vencer el desnivel de la chimenea. Para solucionar este inconveniente se puede recurrir a la energía solar tal y como vemos en la imagen. Con esto provocamos que la temperatura de la parte más alta de la chimenea suba de manera considerable, con lo que tendrá la suficiente fuerza para vencer el desnivel de la chimenea, lo que provocará una succión del aire que se encuentra en la parte inferior de la chimenea (el aire caliente de la vivienda). Este aire succionado se repondrá del aire exterior si hemos abierto una ventana o del pozo canadiense si tenemos el conducto de paso abierto.

Conclusiones

Estos tres sistemas pueden funcionar de forma totalmente independiente, pudiendo obtener ahorros energéticos y económicos muy significativos. Pero si combinamos los tres sistemas el ahorro podrá llegar a ser muy superior. Tal vez en un día de poco sol no sea posible utilizar la chimenea solar, pero aun así podremos recurrir a la ventilación cruzada para climatizar la vivienda. O por ejemplo un día nos proponemos enfriar la vivienda a través de la chimenea solar, pero la temperatura del aire exterior resulta que es superior al aire de la vivienda; no hay problema, en vez de abrir una ventana para aportar aire exterior podemos optar por abrir el canal de paso del pozo canadiense donde el aire si es más frio que en el interior de la vivienda. De esta manera el extractor no sería necesario para hacer la aportación de aire frio, por lo que seguiríamos hablando de un sistema pasivo.

Girona, 15 de Noviembre de 2014

jueves, 6 de noviembre de 2014

Eficiencia Energética: Control de una Instalación Solar

10:59 Posted by Carles Casaponsa Vila , , , , , No comments
eficiencia energética

En el último post vimos las distintas partes de un sistema de placas solares térmicas. Si bien la idea de funcionamiento es muy simple (absorber calor a través de la radiación solar para calentar los depósitos de Agua Caliente Sanitaria y Clima), su funcionamiento es un poco más complejo. Para que la absorción de energía sea la máxima posible la instalación tendrá que controlarse de una manera eficiente, rápida y precisa.

Existen muchos sistemas que nos permiten controlar una estación de placas solares térmicas, los mismos fabricantes de placas suelen tener su propio sistema de control. Aunque son sistemas eficientes y de fácil instalación, no se puede comparar a una instalación con KNX. La razón es la de siempre: integración. Si queremos que nuestra instalación optimice al máximo la energía solar, no solo tendremos que controlar el sistema de placas solares, también hará falta tener el control de las instalaciones de ACS y Clima.

Sondas de Temperatura

ahorro energéticoEl sistema necesitará como mínimo tener una sonda de temperatura en cada uno de los depósitos de ACS y Clima y otra en las placas solares. Aunque con una sola sonda por depósito sea suficiente siempre será recomendable poner dos sondas en cada depósito: una en la parte superior y otra en la inferior. En estado de reposo la temperatura de las dos sondas será la misma, pero cuando los depósitos empiecen a calentarse la superior tomará mayor temperatura por la estratificación del agua. Las diferencias entre una temperatura y las otras pueden llegar a ser muy grandes, con lo que con una sola sonda perderíamos mucha precisión a la hora de hacer el control.

Prioridades

ahorro energéticoUna de las principales funciones del control es la de priorizar el calentamiento de los depósitos. Lo habitual es hacer que el depósito de ACS sea el primero en calentarse, ya que es el más necesario y el que mayor temperatura debe alcanzar (70ºC). El depósito de Clima será el segundo en orden de prioridad, aun así no esperaremos que el depósito de ACS alcance su máximo, un poco antes de que este llegue a los 70ºC, a unos 55ºC, empezaremos a calentar el depósito de Clima, ya que el de ACS ya tendrá la suficiente inercia para llegar a los 70ºC mientras que a la vez se está calentando el Clima.

El calentamiento de estos depósitos se hará a través de bombas, estas no se activarán siempre que la temperatura de las placas solares sea superior a los depósitos. Esperaremos que la temperatura de las placas solares supere en 10 grados la temperatura del depósito a calentar, ya que sino no habría un intercambio de calor.

Disipador

A parte de estas dos prioridades hay que tener en cuenta un factor muy importante de cuando se trabaja con placas térmicas que es el exceso de temperatura. Ese es el motivo por el que en la mayoría de instalaciones térmicas se instala un disipador de calor. Cuando la temperatura de las placas se acerque peligrosamente a la temperatura de evaporación del líquido del circuito solar el sistema de control tendrá que poner en marcha el disipador para que de esta manera el sistema pueda seguir funcionando correctamente. Una vez no haya peligro el sistema de control desactivará otra vez el disipador.

Conclusiones

Lo que se ha definido en este post es un sistema de control estándar, pero con KNX podemos hacer muchas modificaciones sobre él. Podemos, por ejemplo, deshabilitar el sistema de calentamiento auxiliar (ya sea calderas o resistencias eléctricas) cuando tenemos la energía solar suficiente para calentar los depósitos. También podemos calentar el sistema de clima exclusivamente con solar cuando la casa esté desocupada, de esta manera, a cambio del pequeño consumo que puedan tener las bombas de la instalación conseguiremos mantener la casa entre 18 y 19 grados durante los meses de invierno. De esta manera al llegar a casa después de un largo tiempo de ausencia la instalación no tendrá que trabajar tanto para llegar a la temperatura de confort.

Lloret de Mar, 6 de Noviembre de 2014

domingo, 19 de octubre de 2014

Eficiencia energética: Sectorización del Clima

12:45 Posted by Carles Casaponsa Vila , , , No comments
eficiencia energética

Cuando se habla de eficiencia energética en una vivienda, lo primero que nos viene a la cabeza es reducir el consumo eléctrico de los electrodomésticos o su tiempo de encendido. Es verdad que con la domótica podemos llegar a reducir significativamente el consumo eléctrico de luces y electrodomésticos mediante contadores eléctricos, pero la mayor parte de la energía consumida en una vivienda es en el sistema de climatización. A la hora de reducir el consumo de clima hay miles de técnicas posibles, pero la que sin duda es la más simple y contundente es la sectorización del clima de toda la vivienda.

¿En qué consiste la sectorización?

sectorización climaEn las instalaciones convencionales las casas funcionan como podemos ver en la siguiente imagen. Un termostato que suele estar en una de las zonas comunes (en este caso el comedor), da una señal a la caldera cuando la temperatura que detecta está por debajo de la temperatura de confort programada (entre 21 y 24 ºC). Con esta señal la caldera se pone en funcionamiento y empieza a calentar el agua de todo el circuito de clima. El circuito de clima reparte esta agua caliente por todos los radiadores de la vivienda, hasta que la temperatura que el termostato detecta sobrepasa la temperatura de confort. Es este momento el termostato da la señal inversa para que esta deje de calentar el circuito de clima.
ahorro energético¿Pero qué pasa si la temperatura del comedor no es la misma que la del resto de habitaciones? Si, por ejemplo, la temperatura del comedor es más alta que la temperatura de las otras habitaciones, el termostato no dará ninguna señal a la caldera, ya que según él la temperatura ambiente ya es la deseada. Mientras tanto las otras habitaciones estarán por debajo de la temperatura deseada y no empezarán a calentarse hasta que el comedor baje de la temperatura de confort programada.

eficiencia energética
Aun peor sería el caso contrario, imaginemos que ahora el resto de habitaciones ya están a la temperatura de confort deseada pero que en el comedor la temperatura está por debajo de la programada. El termostato daría la señal a la caldera por lo que empezaría a calentar todo el circuito de clima, incluyendo a las habitaciones que ya tienen la temperatura deseada, por lo que las habitaciones que ya estaban a la temperatura correcta ahora estarán más calientes llegando incluso a molestar a sus ocupantes. Y no solamente eso sino que estaremos gastando energía inútilmente.

ahorro clima
Un sistema de clima sectorizado consiste en equipar cada una de las habitaciones con un termostato, de manera que solo se calienten las habitaciones que realmente lo necesitan sin malgastar la energía y manteniendo todas las habitaciones a la temperatura deseada por cada uno de sus ocupantes, ya que la temperatura de confort de una persona no tiene por qué ser la misma que la de la persona de la habitación de al lado.

¿Cómo conseguimos sectorizar el clima de una vivienda?

Lo primero que haremos será equipar cada una de las estancias de la casa. Estos termostatos actuaran igual que en el caso anterior con la diferencia que la señal no se la mandarán a la cadera, sino a una válvula eléctrica de paso instalado en cada uno de los radiadores de la estancia. Al recibir la señal la válvula dejará pasar el agua a través del radiador.

Por otra parte un módulo lógico recibirá el estado de todas las válvulas del sistema, de tal manera que si una de ellas está abierta este mandará la señal de puesta en marcha a la caldera, esta empezará a calentar el circuito de clima con la diferencia que ahora este circuito solo estará compuesto por los radiadores de las habitaciones que realmente necesiten una aportación de calor.

¿Qué beneficios tiene?

El beneficio principal está claro: en el primer caso teníamos que calentar todas las estancias a la vez y por lo tanto todos los radiadores, mientras que con la instalación sectorizada solo vamos a calentar los radiadores necesarios, por lo que el consumo de la caldera será mucho menor en un sistema sectorizado.

Y no solo eso: imaginemos que una de las habitaciones va estar desocupada durante unos días. Antes tenías que girar la válvula de paso del radiador hasta cerrarlo y luego volver a abrirla. Muchas veces ni se hace ya que por unos días no vale la pena el esfuerzo. Pero con el nuevo sistema solo hará falta pulsar un botón para dejar deshabilitado el termostato hasta que la persona vuelva. Es más lo podrá cerrar y abrir antes de llegar la misma persona remotamente a través de su teléfono móvil.

Que coste puede tener una instalación sectorizada?

Claro está que el precio de una instalación centralizada será superior al de una convencional. Mientras que con el sistema convencional hará falta un solo termostato con una instalación sectorizada nos hará falta tantos termostatos como habitaciones a climatizar, y no solo eso, también tendremos que instalar válvulas eléctricas en cada uno de los radiadores y un actuador que le dé la señal. Si además añadimos el modulo lógico que  dará la señal a la caldera nos gastaremos entre 100 y 200 euros por habitación. Mientras que con un sistema convencional nos gastaríamos 100 por un solo termostato.
La cosa cambia si en vez de radiadores la casa  funciona con suelo radiante. La ventaja de este sistema es que todos los circuitos del suelo de cada habitación (qua actúan como radiadores) parten de un colector principal. Con esto no hará falta un actuador para cada estancia, sino que podremos usar un actuador de múltiples salidas especiales para válvulas electro-térmicas, con el que además no nos hará falta un módulo lógico complementario, sino que el mismo dará la señal a la caldera cuando alguna de las válvulas esté abierta.

Con cualquiera de las dos opciones el coste supera ampliamente el de una instalación convencional. No obstante el ahorro energético que conseguiremos será muy importante, pudiendo llegar a amortizar la instalación en menos de 5 años.